Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Safety Res ; 84: 393-403, 2023 02.
Article in English | MEDLINE | ID: covidwho-2254989

ABSTRACT

INTRODUCTION: Disruptions to aviation operations occur daily on a micro-level with negligible impacts beyond the inconvenience of rebooking and changing aircrew schedules. The unprecedented disruption in global aviation due to COVID-19 highlighted a need to evaluate emergent safety issues rapidly. METHOD: This paper uses causal machine learning to examine the heterogeneous effects of COVID-19 on reported aircraft incursions/excursions. The analysis utilized self report data from NASA Aviation Safety Reporting System collected from 2018 to 2020. The report attributes include self identified group characteristics and expert categorization of factors and outcomes. The analysis identified attributes and subgroup characteristics that were most sensitive to COVID-19 in inducing incursions/excursions. The method included the generalized random forest and difference-in-difference techniques to explore causal effects. RESULTS: The analysis indicates first officers are more prone to experiencing incursion/excursion events during the pandemic. In addition, events categorized with the human factors confusion, distraction, and the causal factor fatigue increased incursion/excursion events. PRACTICAL APPLICATIONS: Understanding the attributes associated with the likelihood of incursion/excursion events provides policymakers and aviation organizations insights to improve prevention mechanisms for future pandemics or extended periods of reduced aviation operations.


Subject(s)
Aviation , COVID-19 , Humans , Self Report , Aircraft , Machine Learning
2.
Transp Policy (Oxf) ; 127: 22-30, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1996596

ABSTRACT

We investigate the impact of air travel mobility and global connectivity on viral transmission by tracing the announced arrival time of COVID-19 and its major variants in countries around the world. We find that air travel intensity to a country, "effective distance" as measured by international air traffic, is generally a significant predictor for the announced viral arrival time. The level of healthcare infrastructure in a country is less important at predicting the initial transmission and detection time of a virus. A policy variable, notably the percentage reduction of total inbound seats in response to a viral outbreak, is largely ineffective at delaying viral transmission and discovery time. These findings suggest that air network connectivity is a major contributor to the speed of viral transmission. However, government attempts to delay viral transmission by reducing air network connectivity after the virus is first discovered are largely ineffective.

SELECTION OF CITATIONS
SEARCH DETAIL